Maximum Margin Bayesian Networks
نویسندگان
چکیده
We consider the problem of learning Bayesian network classifiers that maximize the margin over a set of classification variables. We find that this problem is harder for Bayesian networks than for undirected graphical models like maximum margin Markov networks. The main difficulty is that the parameters in a Bayesian network must satisfy additional normalization constraints that an undirected graphical model need not respect. These additional constraints complicate the optimization task. Nevertheless, we derive an effective training algorithm that solves the maximum margin training problem for a range of Bayesian network topologies, and converges to an approximate solution for arbitrary network topologies. Experimental results show that the method can demonstrate improved generalization performance over Markov networks when the directed graphical structure encodes relevant knowledge. In practice, the training technique allows one to combine prior knowledge expressed as a directed (causal) model with state of the art discriminative learning methods.
منابع مشابه
Maximum Entropy Discrimination Markov Networks
Standard maximum margin structured prediction methods lack a straightforward probabilistic interpretation of the learning scheme and the prediction rule. Therefore its unique advantages such as dual sparseness and kernel tricks cannot be easily conjoined with the merits of a probabilistic model such as Bayesian regularization, model averaging, and ability to model hidden variables. In this pape...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملThe Most Generative Maximum Margin Bayesian Networks
Although discriminative learning in graphical models generally improves classification results, the generative semantics of the model are compromised. In this paper, we introduce a novel approach of hybrid generativediscriminative learning for Bayesian networks. We use an SVM-type large margin formulation for discriminative training, introducing a likelihood-weighted l-norm for the SVM-norm-pen...
متن کاملStochastic margin-based structure learning of Bayesian network classifiers
The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantag...
متن کاملBayesian Maximum Margin Principal Component Analysis
Supervised dimensionality reduction has shown great advantages in finding predictive subspaces. Previous methods rarely consider the popular maximum margin principle and are prone to overfitting to usually small training data, especially for those under the maximum likelihood framework. In this paper, we present a posterior-regularized Bayesian approach to combine Principal Component Analysis (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005